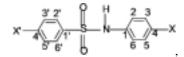
Synthetic, Infrared, 1 H and 13 C NMR Spectral Studies on N-(p-Substituted Phenyl)-p-Substituted Benzenesulphonamides, p-X'C $_6$ H $_4$ SO $_2$ NH-(p-XC $_6$ H $_4$), where X' or X = H, CH $_3$, C $_2$ H $_5$, F, Cl or Br


B. Thimme Gowda, K. L. Jayalakshmi, and Mahesha Shetty

Department of Post-Graduate Studies and Research in Chemistry, Mangalore University, Mangalagangothri-574 199, Mangalore, India.

Reprint requests to Prof. B. T. G., Fax: 91 824 2287 367, E-mail: gowdabt@yahoo.com

Z. Naturforsch. **59a**, 239 – 249 (2004); received February 2, 2004

Thirty N-(p-substituted phenyl)-p-substituted benzenesulphonamides of the general formula, p-X'C₆H₄SO₂NH(p-XC₆H₄), where X' or X = H, CH₃, C₂H₅, F, Cl or Br, are synthesised and their infrared spectra in the solid state and 1 H and 13 C NMR spectra in solution are measured. The N-H stretching vibrational frequencies, v_{N-H} vary in the range 3334-3219 cm⁻¹, while the asymmetric and symmetric SO₂ vibrations appear in the ranges 1377-1311 cm⁻¹ and 1182-1151 cm⁻¹, respectively. The compounds exhibit S-N and C-N stretching vibrational absorptions in the ranges 937-898 cm⁻¹ and 1310-1180 cm⁻¹, respectively. There are no particular trends in the variation of these frequencies on substitution with either electron withdrawing or electron donating groups. The 1 H and 13 C chemical shifts of N-(p-substituted phenyl)-p-substituted benzenesulphonamides,

are assigned to various protons and carbons of the two benzene rings. Further, incremental shifts of the ring protons and carbons due to $-SO_2NH(p-XC_6H_4)$ groups in the compounds of the formula, $C_6H_5SO_2NH(p-XC_6H_4)$, and $p-X'C_6H_4SO_2$ - and $p-X'C_6H_4SO_2NH$ - groups in the compounds of the formula, $p-X'C_6H_4SO_2NH(C_6H_5)$ are computed and used to calculate the 1H and ^{13}C chemical shifts of the parallely substituted compounds of the general formula $p-X'C_6H_4SO_2NH(p-XC_6H_4)$. The computed values agree well with the observed chemical shifts. The above incremental shifts are found to correlate with the Hammett substituent parameters.

Key words: IR; ¹H and ¹³C NMR; N-(p-substitutedphenyl)-p-substitutedbenzenesulphonamides.